Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells.
نویسندگان
چکیده
Dendritic cells (DCs) are a heterogeneous population of cells that are specialized for Ag processing and presentation. These cells are believed to derive from both myeloid- and lymphoid-committed precursors. Normal human PBMC-derived, human CD14+ cell (monocyte)-derived, and mouse hematopoietic progenitor-derived DCs were shown to express the hematopoietic cell-restricted, ets family transcription factor PU.1. These populations represent myeloid progenitor-derived DCs. Hematopoietic progenitor cells from PU.1 gene-disrupted (null) mice were unable to generate MHC class IIhigh, CD11c+ myeloid-derived DCs in vitro. Mouse thymic DCs are proposed to be derived from a committed lymphoid progenitor cell that can give rise to T cells as well as DCs. Previously, we showed that CD4 and CD8 T cells developed in PU.1 null mice in a delayed manner and in reduced number. We examined the thymus of 10- to 12-day-old PU.1 null mice and found no evidence of DEC-205+, MIDC-8+ DCs in this tissue. Our findings indicate that PU.1 regulates the development of both thymic and myeloid progenitor-derived populations of DCs, and expand its known role in hematopoietic development.
منابع مشابه
PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells.
The ets-family transcription factor PU.1 is required for the proper development of both myeloid and lymphoid progenitors. We used PU. 1-deficient animals to examine the role of PU.1 during dendritic cell development. PU.1(-/-)animals produce lymphoid-derived dendritic cells (DC): low-density class II major histocompatibility complex [MHC-II(+)] CD11c(+) CD8alpha(+) DEC-205(+). But they lack mye...
متن کاملBalance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate.
Macrophages and myeloid dendritic cells (DCs) represent alternative differentiation options of bone marrow progenitors and blood monocytes. This choice profoundly influences the immune response under normal and pathological conditions, but the underlying transcriptional events remain unresolved. Here, we show that experimental activation of the transcription factors PU.1 and MafB in transformed...
متن کاملReciprocal Roles for CCAAT/Enhancer Binding Protein (C/EBP) and PU.1 Transcription Factors in Langerhans Cell Commitment
Myeloid progenitor cells give rise to a variety of progenies including dendritic cells. However, the mechanism controlling the diversification of myeloid progenitors into each progeny is largely unknown. PU.1 and CCAAT/enhancing binding protein (C/EBP) family transcription factors have been characterized as key regulators for the development and function of the myeloid system. However, the role...
متن کاملPU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment.
Dendritic cells (DCs) are essential regulators of immune responses; however, transcriptional mechanisms that establish DC lineage commitment are poorly defined. Here, we report that the PU.1 transcription factor induces specific remodeling of the higher-order chromatin structure at the interferon regulatory factor 8 (Irf8) gene to initiate DC fate choice. An Irf8 reporter mouse enabled us to pi...
متن کاملThe ETS family transcription factor PU.1 is necessary for the maintenance of fetal liver hematopoietic stem cells.
PU.1 is a member of the ETS family of transcription factors and is required for the development of multiple hematopoietic lineages. PU.1(-/-) mice die from hematopoietic failure at about embryonic day 18.5 (e18.5) and show a complete absence of B cells, mature T cells, and macrophages. This phenotype suggests that PU.1 may function at the level of the hematopoietic stem cell (HSC) or a multilin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 164 4 شماره
صفحات -
تاریخ انتشار 2000